A.	*		
		(Pages : 4)	10653
Reg. N	o.:	CVIE daragase in whom data is resided	Considers Mi
Name:		a leadenthee by life, leagth remission	was read -
310		B.Tech. Degree Examination, Fe	
Time : :	3 Hours	identified honere and days of birth, ear	Max. Marks: 100
		PART-A	
Answe	er all questions. Eac	h carries 4 marks.	
1. De	fine the terms candi	date key, super key and primary key.	
2. Ho	w equijoin is differer	nt from natural join ?	
	nat do you mean by c ample.	closure set of functional dependencies	? Illustrate with an
4. W	nat are ACID propert	ies? ? said telations	
5. WI	hat is lost update pro	blem ? Illustrate with an example.	
		PART-B	DEED PERSON
Answ	er any one questions	s from each Module.	Maria Maria
		Module - I	
6. a)	Discuss the main ch from traditional file		8
b)	Compare composite	e and atomic attributes.	4
c)	Discuss user-define differences between		8
	OR	Students enrolled for Database Design	
7. a)	schema levels?	schema architecture. Why do we need	6
b)		ce between procedural and nonprocedural	

- c) Consider a MOVIE database in which data is recorded about the movie industry.
 - Each Movie is identified by title, length in minutes and year of release. A
 movie can be classified as one or more genres(horror, action, drama).
 Each movie has a production company and directed by one or more directors.
 One or more actors appear in each movie.
 - Actors are identified by name and date of birth, each actor has a role in the movie.
 - · Directors are identified by name and address.
 - Production companies are identified by name, and location. No movie is produced by more than one production company.

Design and draw Entity-Relationship diagram that expresses the requirements for the movie database.

10

Module - I

8. a) Consider the following relations:

Student(snum: integer, sname: string, major: string, level: string, age: integer)

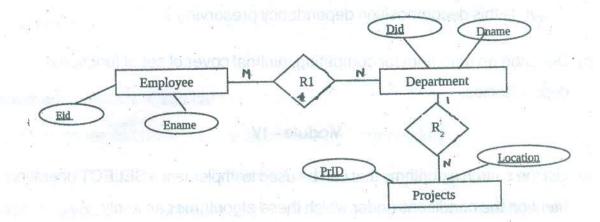
Course (name: string, meets at: string, room: string, fid: integer)

Enrolled (snum:integer, cname:string)

Faculty(fid:integer, fname: string, salary: real)

Write the following queries in SQL

- · Find names of students enrolled for 'Database Design' course.
- Find name of faculty with highest salary.
- Find the names of all Juniors (level = JR) who are enrolled in a course taught by Dr. Santhosh.
- How many students enrolled for 'Database Design' course?
- For each level, print the level and the average age of students for that level.
- 12
- b) Explain integrity and referential integrity constraints. Why each is considered as important? Explain with an example.


8

6

6

 a) Consider the ER diagram. Each employee can work for any department and department contains many employees. Each department sponsors many project, but a project is sponsored by only one department.

- i) Identify the minimum set of relations required to map this to a relational model.
- ii) Draw a schema diagram showing all relations.
- iii) Identify primary key and foreign keys required for 'R1' relationship. Write SQL DDL statements for 'R1' relationship.
- b) Discuss division operation. Express it using other relational algebra operation.
 Write an example.

Module - III

- 10. a) Why should NULLs in a relation to be avoided as far as possible? Discuss the problem of spurious tuples and how we may prevent it.
 - b) Define 2NF and 3NF.
 - c) Find out the keys and highest normal of a relation R(ABCDE) with set of dependencies $G = \{B \rightarrow AC, D \rightarrow A, D \rightarrow E\}$ hold over R.

OR

11.	11. a) What is dependency preservation property of decomposition? Why			
		important?	6	
b)	b)	Suppose a relation R with attributes ABC is decomposed into relations with		
		attributes AB and BC. The set of FDs hold over R includes A \rightarrow B, B \rightarrow C and		
	,	C→A. Is this decomposition dependency preserving?	6	
	c)	Describe an algorithm for computing minimal cover of set of functional		
		dependencies.	8	
		Module – IV		
12. a)	List the search algorithms that can be used to implement a SELECT operation.			
		Mention the conditions under which these algorithms can apply.	10	
	b)	What is two-phase locking protocol? How does it guarantee serializability?	10	
		OR		
13.	a)	How does B-tree differ from a B+ -tree ? Why B+ - tree usually preferred as an access structure to data file ?	12	
	b)	What is cascading rollback? Give an example when cascading rollback is required.	8	

The should NULLs in a relation to be avoided as far at practicle? Discuss its processing spurious and however may prevent.

recourtibe keys and highest correct of a relation R(ABCDE) wan a